Skip to content

DGX Spark

Practical

DGX Spark is NVIDIA’s desktop-class AI supercomputer, announced at CES 2025. It brings datacenter AI performance to developers’ desks, making it ideal for robotics development, simulation, and foundation model training without cloud dependencies.

Why DGX Spark for Robotics?

DGX Spark fills a critical gap in the robotics development workflow:

  • Train locally: Fine-tune foundation models without cloud costs
  • Run Isaac Sim: Full Omniverse simulation at your desk
  • Develop for Thor: Same software stack as Jetson Thor deployment target
  • Air-gapped development: No internet required for sensitive projects

Specifications

SpecDGX Spark
GPUNVIDIA GB10 Grace Blackwell Superchip
AI Performance1,000 TOPS (INT8), 1 PFLOP (FP4 sparse)
CUDA Cores6,144
Tensor Cores192 (5th gen)
RT Cores48 (4th gen)
Memory128GB unified LPDDR5X
Memory Bandwidth273 GB/s
CPU20-core ARM (10x Cortex-X925 + 10x Cortex-A725)
Storage4TB NVMe (Founders), 1TB+ (partners)
Connectivity1x 10GbE, 2x QSFP (200Gbps), WiFi 7, BT 5.3, 4x USB 4.0
Power240W PSU, 140W TDP
Dimensions150 × 150 × 50.5 mm (1.2 kg)

Architecture

┌─────────────────────────────────────────────────────────────┐
│ DGX Spark │
├─────────────────────────────────────────────────────────────┤
│ ┌─────────────────────────────────────────────────────┐ │
│ │ NVIDIA GB10 Grace Blackwell Superchip │ │
│ │ ┌───────────────┐ ┌───────────────────────────┐ │ │
│ │ │ CUDA Cores │ │ Transformer Engine │ │ │
│ │ │ 6,144 │ │ FP4 / FP8 / BF16 │ │ │
│ │ └───────────────┘ └───────────────────────────┘ │ │
│ │ ┌───────────────┐ ┌───────────────────────────┐ │ │
│ │ │ Tensor Cores │ │ RT Cores (Gen 4) │ │ │
│ │ │ 192 (Gen 5) │ │ 48 cores │ │ │
│ │ └───────────────┘ └───────────────────────────┘ │ │
│ └─────────────────────────────────────────────────────┘ │
│ ┌─────────────────────────────────────────────────────┐ │
│ │ 128GB Unified Memory (CPU + GPU) │ │
│ └─────────────────────────────────────────────────────┘ │
│ ┌──────────────┐ ┌──────────────┐ ┌───────────────┐ │
│ │ ARM CPU │ │ 4TB NVMe │ │ 10GbE + QSFP │ │
│ │ 20 cores │ │ Storage │ │ WiFi 7 │ │
│ └──────────────┘ └──────────────┘ └───────────────┘ │
└─────────────────────────────────────────────────────────────┘

Robotics Development Workflow

1. Simulate

Run Isaac Sim locally with full ray-tracing. Create digital twins of your robots and environments.

2. Train

Fine-tune foundation models (GR00T, VLA) on your own data without cloud uploads.

3. Validate

Test perception and control stacks in simulation before real hardware.

4. Deploy

Export to Jetson Thor/Orin with identical software stack.

Software Stack

DGX Spark runs the same software as NVIDIA’s datacenter DGX systems:

┌─────────────────────────────────────────────────────────────┐
│ Your Development │
├─────────────────────────────────────────────────────────────┤
│ Isaac Sim 5.x │ Isaac Lab │ Omniverse Kit │ USD Composer │
├─────────────────────────────────────────────────────────────┤
│ PyTorch 2.9 │ TensorRT │ Triton │ NeMo │ cuML │ RAPIDS │
├─────────────────────────────────────────────────────────────┤
│ CUDA 13 │ cuDNN │ Transformer Engine │ NCCL │
├─────────────────────────────────────────────────────────────┤
│ DGX OS (Ubuntu 24.04, HWE kernel 6.14) │
└─────────────────────────────────────────────────────────────┘
Terminal window
# Isaac Sim 5.x runs natively on DGX Spark
# Full ray-tracing, PhysX 5, domain randomization
# Launch Isaac Sim
~/.local/share/ov/pkg/isaac-sim-5.1.0/isaac-sim.sh
# Or via Omniverse Launcher
omniverse-launcher

DGX Spark can run complex warehouse scenes at 30+ FPS with ray-tracing enabled.

Note: Some Isaac Lab features are not supported on aarch64: SkillGen, OpenXR, SKRL/JAX training.

Use Cases

Local Foundation Model Development

# Train a 7B parameter VLA model entirely on DGX Spark
# 128GB unified memory eliminates GPU memory constraints
from transformers import AutoModelForVision2Seq
# Load large model - fits in unified memory
model = AutoModelForVision2Seq.from_pretrained(
"nvidia/gr00t-7b",
torch_dtype=torch.bfloat16,
device_map="auto",
)
# Fine-tune on robot demonstration data
trainer = Trainer(
model=model,
train_dataset=robot_demos,
args=TrainingArguments(
bf16=True,
per_device_train_batch_size=8, # Large batches possible
gradient_accumulation_steps=4,
),
)
trainer.train()

High-Fidelity Simulation

Run photorealistic simulations for:

  • Synthetic data generation with domain randomization
  • Sim-to-real transfer validation
  • Digital twin verification
  • Multi-robot coordination testing

Edge Deployment Testing

Terminal window
# Simulate Jetson Thor performance on DGX Spark
# Use power/performance profiles
nvidia-smi --power-limit=150 # Match Thor power envelope
# Run same JetPack 7.0 containers as production
docker run --gpus all nvcr.io/nvidia/jetson-thor:jp7.0-runtime

DGX Spark vs Alternatives

AspectDGX SparkGaming PCCloud GPUDGX Station
Price$2,999+$2,000+$/hour$50,000+
AI TOPS1,000~300Varies2,000+
Unified Memory128GB16-24GB80GB (A100)256GB+
Isaac SimFullLimitedNetwork latencyFull
Transformer EngineYesNoYes (H100)Yes
Form FactorNUC-styleTowerN/AWorkstation
Air-gappedYesYesNoYes

Getting Started

1. Unbox and Connect

  • Connect power (240W adapter included)
  • Connect display via HDMI 2.1a or USB 4.0
  • Connect to network (10GbE or QSFP recommended for large datasets)

2. Initial Setup

Terminal window
# DGX Spark comes with DGX OS pre-installed
# On first boot, create user account
# Verify GPU
nvidia-smi
# Check Transformer Engine
python -c "import transformer_engine; print(transformer_engine.__version__)"

3. Install Robotics Stack

Terminal window
# Install Isaac Sim via Omniverse Launcher
# Or command line:
./omniverse-launcher-linux.AppImage
# Install Isaac Lab
pip install omni-isaac-lab
# Install Isaac ROS development tools
sudo apt install ros-jazzy-isaac-ros-dev-tools

Sources