Isaac Sim
Practical
Terminal window Terminal window Terminal window
Isaac Sim is NVIDIA’s robotics simulation platform built on Omniverse. It provides photorealistic rendering, accurate physics, and seamless integration with ROS 2 and Isaac ROS, making it the gold standard for developing and testing robot software before deploying to real hardware.
Why Isaac Sim?
| Challenge | Isaac Sim Solution |
|---|---|
| Real robots are expensive | Simulate thousands in parallel |
| Real-world testing is slow | 10,000x faster than real-time possible |
| Collecting real data is hard | Generate unlimited synthetic data |
| Edge cases are rare | Create any scenario on demand |
| Sim-to-real gap | Photorealistic rendering, accurate physics |
Key Features
Photorealistic Rendering
- RTX ray tracing — Accurate reflections, shadows, global illumination
- Path tracing — Ground-truth lighting for synthetic data
- Material physics — Realistic surfaces, transparency, subsurface scattering
PhysX 5 Simulation
- Rigid body dynamics — Accurate contact, friction, collisions
- Soft body — Deformable objects, cloth, rope
- Fluid simulation — Liquids, particles
- GPU acceleration — Thousands of objects in real-time
Sensor Simulation
| Sensor | Simulation Quality |
|---|---|
| RGB Camera | Photorealistic with ray tracing |
| Depth Camera | Multiple noise models (stereo, ToF) |
| LiDAR | Physically accurate beam simulation |
| IMU | Configurable noise, bias models |
| Contact/Force | From PhysX collision detection |
Architecture
┌─────────────────────────────────────────────────────────────┐│ Isaac Sim │├─────────────────────────────────────────────────────────────┤│ ┌─────────────┐ ┌─────────────┐ ┌─────────────────────┐ ││ │ Isaac Lab │ │ Replicator │ │ ROS 2 Bridge │ ││ │ (RL/IL) │ │ (Syn Data) │ │ (Robot Integration) │ ││ └─────────────┘ └─────────────┘ └─────────────────────┘ │├─────────────────────────────────────────────────────────────┤│ Omniverse Kit ││ ┌─────────────┐ ┌─────────────┐ ┌─────────────────────┐ ││ │ PhysX 5 │ │ RTX Renderer│ │ USD Scene Graph │ ││ └─────────────┘ └─────────────┘ └─────────────────────┘ │├─────────────────────────────────────────────────────────────┤│ NVIDIA GPU │└─────────────────────────────────────────────────────────────┘Getting Started
System Requirements
| Component | Minimum | Recommended |
|---|---|---|
| GPU | RTX 4080 | RTX 5080 / RTX PRO 6000 / DGX Spark |
| VRAM | 16GB | 16GB+ |
| RAM | 32GB | 64GB+ |
| Storage | 50GB SSD | NVMe SSD |
| OS | Ubuntu 22.04 | Ubuntu 22.04/24.04 |
Installation
# 1. Download Omniverse Launcher# https://www.nvidia.com/en-us/omniverse/
# 2. Install from Launcher# Exchange → Isaac Sim → Install
# 3. Launch~/.local/share/ov/pkg/isaac-sim-5.1.0/isaac-sim.sh# Pull Isaac Sim containerdocker pull nvcr.io/nvidia/isaac-sim:5.1.0
# Run with GUIdocker run --gpus all -e "ACCEPT_EULA=Y" \ -v ~/docker/isaac-sim/cache:/isaac-sim/cache \ -v ~/docker/isaac-sim/logs:/root/.nvidia-omniverse/logs \ nvcr.io/nvidia/isaac-sim:5.1.0# For training/CI (no GUI)./isaac-sim.sh --headless \ --/app/window/enabled=false \ --/app/livestream/enabled=trueCore Workflows
1. Import Your Robot
Load robots from URDF, MJCF, or USD:
from omni.isaac.core.utils.stage import add_reference_to_stage
# Import URDFfrom omni.isaac.urdf import _urdfurdf_interface = _urdf.acquire_urdf_interface()robot_path = urdf_interface.parse_urdf( "robot.urdf", import_config)2. Build Your Scene
from omni.isaac.core import Worldfrom omni.isaac.core.objects import DynamicCuboid
# Create worldworld = World()
# Add ground planeworld.scene.add_default_ground_plane()
# Add objectscube = world.scene.add( DynamicCuboid( prim_path="/World/Cube", position=[0.5, 0, 0.5], size=0.1, ))3. Connect to ROS 2
# Enable ROS 2 bridgeimport omni.graph.core as og
# Create ROS 2 camera publisherog.Controller.edit( {"graph_path": "/ROS2_Camera"}, { og.Controller.Keys.CREATE_NODES: [ ("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"), ("CameraHelper", "omni.isaac.ros2_bridge.ROS2CameraHelper"), ], og.Controller.Keys.SET_VALUES: [ ("CameraHelper.inputs:topicName", "/camera/image_raw"), ("CameraHelper.inputs:frameId", "camera"), ], },)4. Run Simulation
# Step simulationwhile world.is_playing(): world.step(render=True)
# Get sensor data rgb = camera.get_rgba() depth = depth_camera.get_depth()
# Send commands robot.apply_action(joint_commands)Isaac Lab (Robot Learning)
Isaac Lab is the framework for training robot policies:
from omni.isaac.lab.envs import ManagerBasedRLEnv
# Create parallel environmentsenv = ManagerBasedRLEnv( cfg=MyRobotEnvCfg, num_envs=4096, # Massive parallelism!)
# Training loopobs = env.reset()for _ in range(1000000): actions = policy(obs) obs, rewards, dones, infos = env.step(actions)Capabilities:
- 4096+ parallel environments on single GPU
- Domain randomization built-in
- Pre-built tasks: locomotion, manipulation, navigation
Replicator (Synthetic Data)
Generate labeled training data:
import omni.replicator.core as rep
# Randomize scenewith rep.trigger.on_frame(): # Randomize lighting rep.randomizer.light( intensity=rep.distribution.uniform(500, 5000) ) # Randomize object poses rep.randomizer.scatter_2d( surface=table, num_objects=rep.distribution.uniform(5, 10) )
# Generate labelsrep.WriterRegistry.get("BasicWriter")( output_dir="./synthetic_data", rgb=True, bounding_box_2d_tight=True, semantic_segmentation=True,)Performance Tips
- Use GPU physics — Enable PhysX GPU acceleration
- Lower render resolution during training
- Disable ray tracing when not needed
- Use headless mode for CI/training
- Batch sensor reads — Don’t query every frame if not needed
Integration with Real Robots
┌─────────────────┐ ┌─────────────────┐│ │ │ ││ Isaac Sim │ ◄───► │ ROS 2 ││ (Simulation) │ │ (Bridge) ││ │ │ │└─────────────────┘ └────────┬────────┘ │ Same ROS 2 messages │ ┌────────▼────────┐ │ │ │ Real Robot │ │ (Jetson) │ │ │ └─────────────────┘Your ROS 2 code runs unchanged in sim and on real hardware.
Related Terms
Isaac ROS GPU-accelerated ROS 2 packages
Reinforcement Learning Train policies in Isaac Lab
DGX Spark Desktop workstation for Isaac Sim
Jetson Thor Deploy trained policies
Sources
- Isaac Sim 5.1.0 Documentation — Version info, system requirements, installation
- Isaac Sim Release Notes — Version history, deprecations
- Isaac Lab GitHub — Isaac Lab source and documentation
- Isaac Sim GitHub — Open source extensions
- Newton Physics Engine — Open-source physics engine built on NVIDIA Warp