Skip to content

Isaac Sim

Practical

Isaac Sim is NVIDIA’s robotics simulation platform built on Omniverse. It provides photorealistic rendering, accurate physics, and seamless integration with ROS 2 and Isaac ROS, making it the gold standard for developing and testing robot software before deploying to real hardware.

Why Isaac Sim?

ChallengeIsaac Sim Solution
Real robots are expensiveSimulate thousands in parallel
Real-world testing is slow10,000x faster than real-time possible
Collecting real data is hardGenerate unlimited synthetic data
Edge cases are rareCreate any scenario on demand
Sim-to-real gapPhotorealistic rendering, accurate physics

Key Features

Photorealistic Rendering

  • RTX ray tracing — Accurate reflections, shadows, global illumination
  • Path tracing — Ground-truth lighting for synthetic data
  • Material physics — Realistic surfaces, transparency, subsurface scattering

PhysX 5 Simulation

  • Rigid body dynamics — Accurate contact, friction, collisions
  • Soft body — Deformable objects, cloth, rope
  • Fluid simulation — Liquids, particles
  • GPU acceleration — Thousands of objects in real-time

Sensor Simulation

SensorSimulation Quality
RGB CameraPhotorealistic with ray tracing
Depth CameraMultiple noise models (stereo, ToF)
LiDARPhysically accurate beam simulation
IMUConfigurable noise, bias models
Contact/ForceFrom PhysX collision detection

Architecture

┌─────────────────────────────────────────────────────────────┐
│ Isaac Sim │
├─────────────────────────────────────────────────────────────┤
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────────────┐ │
│ │ Isaac Lab │ │ Replicator │ │ ROS 2 Bridge │ │
│ │ (RL/IL) │ │ (Syn Data) │ │ (Robot Integration) │ │
│ └─────────────┘ └─────────────┘ └─────────────────────┘ │
├─────────────────────────────────────────────────────────────┤
│ Omniverse Kit │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────────────┐ │
│ │ PhysX 5 │ │ RTX Renderer│ │ USD Scene Graph │ │
│ └─────────────┘ └─────────────┘ └─────────────────────┘ │
├─────────────────────────────────────────────────────────────┤
│ NVIDIA GPU │
└─────────────────────────────────────────────────────────────┘

Getting Started

System Requirements

ComponentMinimumRecommended
GPURTX 4080RTX 5080 / RTX PRO 6000 / DGX Spark
VRAM16GB16GB+
RAM32GB64GB+
Storage50GB SSDNVMe SSD
OSUbuntu 22.04Ubuntu 22.04/24.04

Installation

Terminal window
# 1. Download Omniverse Launcher
# https://www.nvidia.com/en-us/omniverse/
# 2. Install from Launcher
# Exchange → Isaac Sim → Install
# 3. Launch
~/.local/share/ov/pkg/isaac-sim-5.1.0/isaac-sim.sh

Core Workflows

1. Import Your Robot

Load robots from URDF, MJCF, or USD:

from omni.isaac.core.utils.stage import add_reference_to_stage
# Import URDF
from omni.isaac.urdf import _urdf
urdf_interface = _urdf.acquire_urdf_interface()
robot_path = urdf_interface.parse_urdf(
"robot.urdf",
import_config
)

2. Build Your Scene

from omni.isaac.core import World
from omni.isaac.core.objects import DynamicCuboid
# Create world
world = World()
# Add ground plane
world.scene.add_default_ground_plane()
# Add objects
cube = world.scene.add(
DynamicCuboid(
prim_path="/World/Cube",
position=[0.5, 0, 0.5],
size=0.1,
)
)

3. Connect to ROS 2

# Enable ROS 2 bridge
import omni.graph.core as og
# Create ROS 2 camera publisher
og.Controller.edit(
{"graph_path": "/ROS2_Camera"},
{
og.Controller.Keys.CREATE_NODES: [
("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"),
("CameraHelper", "omni.isaac.ros2_bridge.ROS2CameraHelper"),
],
og.Controller.Keys.SET_VALUES: [
("CameraHelper.inputs:topicName", "/camera/image_raw"),
("CameraHelper.inputs:frameId", "camera"),
],
},
)

4. Run Simulation

# Step simulation
while world.is_playing():
world.step(render=True)
# Get sensor data
rgb = camera.get_rgba()
depth = depth_camera.get_depth()
# Send commands
robot.apply_action(joint_commands)

Isaac Lab (Robot Learning)

Isaac Lab is the framework for training robot policies:

from omni.isaac.lab.envs import ManagerBasedRLEnv
# Create parallel environments
env = ManagerBasedRLEnv(
cfg=MyRobotEnvCfg,
num_envs=4096, # Massive parallelism!
)
# Training loop
obs = env.reset()
for _ in range(1000000):
actions = policy(obs)
obs, rewards, dones, infos = env.step(actions)

Capabilities:

  • 4096+ parallel environments on single GPU
  • Domain randomization built-in
  • Pre-built tasks: locomotion, manipulation, navigation

Replicator (Synthetic Data)

Generate labeled training data:

import omni.replicator.core as rep
# Randomize scene
with rep.trigger.on_frame():
# Randomize lighting
rep.randomizer.light(
intensity=rep.distribution.uniform(500, 5000)
)
# Randomize object poses
rep.randomizer.scatter_2d(
surface=table,
num_objects=rep.distribution.uniform(5, 10)
)
# Generate labels
rep.WriterRegistry.get("BasicWriter")(
output_dir="./synthetic_data",
rgb=True,
bounding_box_2d_tight=True,
semantic_segmentation=True,
)

Performance Tips

  1. Use GPU physics — Enable PhysX GPU acceleration
  2. Lower render resolution during training
  3. Disable ray tracing when not needed
  4. Use headless mode for CI/training
  5. Batch sensor reads — Don’t query every frame if not needed

Integration with Real Robots

┌─────────────────┐ ┌─────────────────┐
│ │ │ │
│ Isaac Sim │ ◄───► │ ROS 2 │
│ (Simulation) │ │ (Bridge) │
│ │ │ │
└─────────────────┘ └────────┬────────┘
Same ROS 2 messages
┌────────▼────────┐
│ │
│ Real Robot │
│ (Jetson) │
│ │
└─────────────────┘

Your ROS 2 code runs unchanged in sim and on real hardware.

Sources